Generalization Theory

在这里我会分享一些关于泛化理论的相关知识,包括 Uniform Convergence, PAC-Bayes, stability-based bound, implicit bias, benign overfitting 等(当前正在更新中)。参考资料见本页面最下方。如果您发现任何错误、或对某个部分感到疑惑,可以随时通过 Email (tjy20@mails.tsinghua.edu.cn) 或微信 (ID: adoutengjiaye) 和我联系。非商用情况下,所有课件标明出处后均可免费下载、转载。商用转载请先与我取得联系。

Wechat Group


为了方便讨论,我们创建了一个微信群。可以先添加我的微信 (微信号: adoutengjiaye),我会拉您进群。

Video and Notes


Chapter 0: Preliminary
0.1.1: 序言 [video] [slides]
0.2.1: ERM 模型 [video] [slides]
0.3.1: No-Free-Lunch Theorem [video] [slides]
0.3.2: PAC Learning [video] [slides]
0.3.3: 有限假设类 [video] [slides]

Chapter 1: Traditional Statistics
1.1.1: 参数一致性(consistency) [video] [slides]
1.1.2: 岭回归 (ridge regression) [video] [slides]
1.2.1: 广义线性模型 (generalized linear models) [video] [slides]

Chapter 2: Uniform Convergence
2.1.1: 一致收敛 (uniform convergence) [video] [slides]
2.2.1: VC 维 [video] [slides]
2.3.1: 拉德玛赫复杂度 (Rademacher Complexity) [video] [slides]

Chapter 3: Algorithmic Stability
3.1.1: 算法稳定性 (Algorithmic Stability) [video] [slides]
3.1.2: 算法稳定性证明 [video] [slides]

Chapter 4: PAC-Bayesian
4.1.1: PAC-贝叶斯 (PAC-Bayesian) [video] [slides]
4.1.2: PAC-贝叶斯证明 [video] [slides]

Chapter 5: Information-based
5.1.1: 泛化与信息论 (Information-based Generalization) [video] [slides]

Chapter 6: Implicit Bias
6.1.1: 隐式误差 (Implicit Bias) [video] [slides]

Reference


[book] Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz and Shai Ben-David (2014)